
Merging traditional contracts (or law) and (smart) e-contracts – a novel approach

Florian Idelberger
European University Institute

florian.idelberger@eui.eu

Abstract

For a long time, there have been various parallel develop-
ments in the area of AI and Law, Legaltech more recently or
computable law, data exchange formats, e-contracts, agree-
ment systems and similar. Some working more on creat-
ing normative or logical systems outside of traditional law
such as business logic systems, others on bringing proba-
bilistic approaches to reasoning about law or understanding
human language, and as an extension, law written in that lan-
guage. A particular important development are computable
contracts, either through DSLs, understanding of natural lan-
guage or repurposing of other languages such as logic-based
languages. In this paper, the most important competitors for
writing computable contracts that translate to the environ-
ment of a blockchain’s normative environment will be exam-
ined in light of their usefulness for creating and merging con-
tracts and e-contracts, functionality and legal looks. Champi-
oning the idea that the machine does not actually have to un-
derstand anything to be useful, as long as it can comprehen-
sively translate, all the while keeping syntax and semantics
intact, making for a more closely integrated contract stack.

1 Introduction
This work compares several kinds of programming lan-
guages that are used and developed for working in conjunc-
tion with or instead of traditional legal contracts, compared
specifically when deployed upon a blockchain based smart
contract system or a similar normative environment. Differ-
ent approaches and methods are available, from simple com-
puter code that in effect also has legal implications but isn’t a
contract as such and various bridging technologies and (such
as SCTs (Wong, Meng 2018)) to the newest advances in
writing contracts that have an automatic and accurate elec-
tronic representation. “Legal Tech” in various forms and
different comprehensions has been all the rage for a while
now, and still is. (Braegelmann, Breidenbach, and Glatz
2019) There has been tremendous progress in everything
from probabilistic analysis of legal cases to templating sys-
tems and contract management systems, as well as the pro-
cessing of large amounts of cases in specific niches, such as
with flight delay claims and similar mass markets. This also
brought renewed interest in general AI & Law/computable
law as well as more specifically computable contracts. This
work then focuses on computable contracts as understood by
Surden (Surden 2012), represented by merging a traditional,

natural language legal contract with a smart contract or other
e-contract systems. The paper at hand will focus on contract
law and specifically a licensing contract for software eval-
uation. This will be implemented and compared in three
different systems. The comparison is made between a direct
smart contract language (Solidity) (Christian Reitwiessner
2020), Prolog (SWI-Prolog 2020) as an alternative declar-
ative, logic-based approach and the Lexon (Diedrich 2020)
Smart Legal Compiler using an NLP-like approach and a
smart contract templating system. Each of the approaches
will be briefly introduced where after the implementation is
introduced, and finally they will be compared and evaluated
based on Surden’s criteria and general legal and technolog-
ical considerations defined more accurately later on. After
the introduction, there will be a brief ‘primer’ on previous
and existing technologies of AI & law and specifically e-
contracting. Thereafter the method and case-selection em-
ployed here will be implored in more detail, explaining how
implementations were made and tested. Then, the overall
case and example license will be presented, where after each
implementation is introduced, first by introducing the tech-
nology itself and then the implementation that was made. In
the end, an analysis is conducted, and a conclusion drawn.
After specially designed programming languages, legal in-
terchange formats and different bridging technologies either
with or without smart contracts, new natural-language-like
systems present a new frontier for legal programming and
e-contracting, merging traditional and electronic contracts.

2 Primer on Legal Technologies
For quite some time, various technologies for some kind
of digitalization of law have been developed under differ-
ent headings, such as ‘ai & law’, ‘computable law’ , ‘com-
putable contracts’ , ‘e-contracts’ or ‘smart contracts’ , ‘con-
tract management’, ‘rule systems’, or even very generally
‘legal tech’ which has in recent years become more and more
popular with the rise of startups and law firms focusing on
legal innovation and digitization.

2.1 Legal Markup
On a basic level of textual representation, there are the sys-
tems that structure legal documents, with some tailored to-
wards legislative or judicial documents and others target-
ing contractual documents. This is covered by Legal XML

(OASIS 2008) / Akoma Ntoso (Akoma Ntoso 2015), LKIF
(Boer, Winkels, and Vitali 2008) and their variants.

2.2 Logic-Based Languages
These are languages and system to reason about legal argu-
ments or outcomes, where logic-based languages are espe-
cially prominent. Specifically, Defeasible logic (Nute 1993;
Garcia and Simari 2002) was developed as an extension to
simple argumentative logic. More widespread and com-
plete languages like Prolog (SWI-Prolog 2020) and Rea-
sonML (ReasonML 2020) can be used for similar purposes,
such as creating computable law and contracts and reason-
ing about legal cases. Part of logic-based languages, ex-
pert systems (a precursor of what today is known as ’AI’
or ‘ML’) based on these (or expert systems based on other
languages) are ontologies and knowledge bases. Ontologies
are ‘explicit format specifications of the terms in the domain
and the relations among them’ (Natalya F. Noy and Debo-
rah L. McGuinness 2001) and a set of instantiated ontologi-
cal classes constitutes a knowledge base that can be used by
logic-based languages or more generally expert systems.

2.3 E-Contract Systems
In particular, different evolutions of e-contracting systems
can be distinguished. Primarily, there are contract man-
agement systems and e-contracting technologies as such –
where the primary aim is merging or integrating legal con-
tractual form, format and structure with some form of tech-
nological function and structure. This can be either for just
making contracts more machine readable by enhancing them
with markup, or all the way up to integrating logic into
a document, then automating monitoring and compliance.
In this paper, the classification specified by Meng Wong
(Wong, Meng 2018) will be employed, where 1st Gen sys-
tems are older, proprietary document management and busi-
ness automation systems, Second Generation system tend to
be newer and more open-source, with many 2.5 Gen Sys-
tems having a relation to blockchain based smart contracts
and more automation and logic than older systems. Third
generation systems are computable law systems such as the
CDL/compk by Stanford (unpublished) (Stanford University
2015) and perhaps Lexon.

2.4 Metadata Systems
A further, also very important class are meta data formats
and systems that process metadata. This is especially very
widely used in the area of copyright. Famously SPDX
(Odence, Lamons, and Lovejoy 2013) set up a system for
open source software packages of all kinds to specify their
license, so that licenses can be processed and assessed for
compatibility automatically. This has also been adapted or
at least been written about to be used in a similar way for
other forms of intellectual property, such as in “Computable
Law” where Surden writes about SPDX as a way to imple-
ment more specific licenses and DRM. (Surden 2012)

2.5 “Legal Tech”
Finally, practical, modern, commercial examples of ‘Legal
Tech’ are companies such as FlightRight (claims for com-

pensation of delayed flights), WenigerMiete.de (calculating
if you are paying too much rent for your area and helping
with claims against that). (Ambrogi 2017)

3 What’s legal about code? - The pyramid of
norms

One topic that frequently comes up, and has been dis-
cussed numerous times is, if a ‘smart contract’ or another ‘e-
contract’ is even a contract in the legal sense. Numerous in-
terpretations narrations abound in literature from ‘of course
not, nothing legal about it’ to ‘it will run everything and be-
come sky net’. Fortunately, more nuanced and pragmatic
interpretations exist as well. For the present work, the def-
initions by Allen (Allen 2018), also used by Cohney/Hoff-
mann (Cohney and Hoffman 2020) are used, as they em-
ploy a comprehensive understanding of contractual agree-
ment, focusing on agreement and deriving that from a com-
prehensive ‘contract stack’ which incorporates the textual
representation with the layers of natural language and legal
language, the program code and many other utterances that
potentially signify intent such as tweets and marketing com-
munication. Whether these are part of the relevant contract
stack and are part of defining the intent depends on the spe-
cific circumstances and would ultimately have to be decided
on a case by case basis. As contracts never exist in limbo
or a closed, encapsulated system, this is a solid approach to
understanding the nature of smart contracts specifically and
e-contracts generally. The term contract stack is especially
fitting, as it can similarly be used to describe traditional con-
tracts that do not have an executable part, as their interpre-
tation in case of doubt also is sought elsewhere. It is also
very similar to the ‘legislative stack’ where communications
and especially remarks in preparatory documents are used
to gage intent. While there is no clear overarching hierarchy
in a contract stack, it can be derived in a specific case, such
as that text and executable code are probably always higher
in rank than intent signified by marketing communication.
For the present work, this analogy is important as it frees
the later analysis of the specific decision whether a partic-
ular instance of textual contract, executable code and other
communication or a part of those constitutes a legal contract
at a given or all points in time, in a given or all jurisdictions,
as the only important conclusion is – it can – in principle.

4 Method
In this section, the method and case selection will be de-
scribed, meaning how (and why that way) technological so-
lutions were compared and how those that were chosen were
selected. To evaluate the suitability of techniques and com-
pilers this work builds on previous work where a simple li-
cense for evaluation of a product was described in natural
legal language, then implemented with Solidity and in de-
feasible logic. In that case, there was a much more detailed
investigation of contract theory, and in the end a focus on
the benefits of declarative specification. (Governatori et al.
2018) However, it is assumed that because all relevant ju-
dicial jurisdictions allow many different forms of signifying
contractual intent and agreement, that the model of the ‘con-

tractual stack’ by Allen (Allen 2018) holds, and thus while
there are certainly differences, these can be disregarded for
this exercise. From a legal point of view, depending on ju-
risdiction there is a definite distinction between license and
contract, especially in the United States. In Germany on the
other hand for example, a license is just a different type of
contract. For the example presented here, no specific ju-
risdiction is assumed, although a contractual nature of the
license is presumed. (Andres Guadamuz and Andrew Rens
2013)

Compared to the past work, the license example is ex-
tended to make for a more realistic testcase. Most impor-
tantly, it was extended to include an actual license grant,
header with all the participants and a licensing and breach
fee. Additionally, to make it more suitable to an e-contract,
an arbiter was added so that in case of a dispute, an exter-
nal party can judge the facts. Finally, the ability to subli-
cense was added to mirror the licensing example used by
Surden. (Surden 2012) These additions add a minimal in-
crease in size, as is relevant for publication, but maximize
the usefulness and completeness of the license example. Af-
ter a description and explanation of the license at hand and
more detailed explanation of its legal nature, the implemen-
tations will be presented, such that first the technology itself
is described for general understanding and analysed as to its
relevance and its specific features that are employed for the
task at hand, after which the relevant implementation is pre-
sented. To start, the license example is implemented in a cur-
rent version of solidity. (Christian Reitwiessner 2020) This
programming language was chosen because it is still the pri-
mary programming language for Ethereum smart contracts
(and some others). Secondly, the license example is im-
plemented in Prolog, (SWI-Prolog 2020) a logic based lan-
guage popular for knowledge bases, natural language work
and pseudo-code. This was chosen as opposed to Defeasible
Logic (Governatori et al. 2018) or another logic notation as
it is much more popular, more easily accessible and repro-
ducible and last but not least with SWISH/SWI-Prolog as
a public implementation, the code can easily be tested and
run.

Finally, the same license example is implemented in
Lexon (Lexon Foundation 2020), a next-gen legal compiler
merging legal contracts with smart contracts – without los-
ing NLP-like semantics and information of natural language,
while gaining substantial automated powers. This compiler
was chosen because it is currently at the forefront of merg-
ing legal contracts and e-contracts. It combines the clarity of
declarative systems with the possibilities of smart-contracts
and thus is great to differentiate against Prolog and Solidity.
Finally, in the analysis, the different systems and technolo-
gies are contrasted in more detail, based on the criteria by
Surden and Cohney/Hoffman. (Cohney and Hoffman 2020)

5 Test Case
A textual test case of a license contract is put forward, that
is then used to evaluate against all the technological imple-
mentations later on. It is presented in a similar way as the
implementations but focuses more on legal aspects.

5.1 Textual ”Technology”
The most common and ordinary use of contracts is still by
ordinary language, written or spoken words in a given natu-
ral language that can be enriched with legal jargon and terms
specific to a particular field or industry. The ‘medium’ is of-
ten a piece of paper, but one particular feature of the law
is that its medium or articulation are of lesser importance
unless otherwise prescribed.

5.2 Test Case
Example 1. This license is an example evaluation license.

LICENSEE - The University
SUBLICENSEE - A student as set force in the ap-
pendix. (array of persons)
ARBITER - An arbiter or oracle that decides in
case of disputes. Can be a natural or legal per-
son or a machine. Art. 2, 3 and 4 especially are
evaluated by the arbiter in case of disputes.
ASSET X - An asset to be licensed.

Article 1. The Licensor grants the Licensee a license to
use and evaluate asset X and grant sublicenses
among group Y, for use and evaluation. This
grant is in exchange for a licensing fee.

Article 2. (optional) The (Sub)Licensee is commissioned to
publish comments about the use of the product.
This allows publication of comments but also re-
quires them.

Article 3. The (Sub)Licensee must not publish comments of
the use and evaluation of the Product without the
approval of the Licensor; the approval must be
obtained before the publication. If the Licensee
publishes results of the evaluation of the Product
without approval from the Licensor, the Licensee
has 24 h to remove the material.

Article 4. Article 4. This license terminates automatically
if the (Sub)Licensee breaches this Agreement.
Breach obliges the licensee to pay a fee to Licen-
sor for Breach of the Licensing Terms.

The test case is a license contract to license a copy of a
software or other specified work for use and evaluation, in
exchange for a licensing fee. Furthermore, sublicensees can
be specified. These grants and license are defined in article
1. The sublicense part was inspired by Surden’s description
of a licensing system where universities can automatically
manage the licenses of their libraries and conclude more tai-
lored licensing agreements. In article 2, it is defined that op-
tionally, the licensee or sublicensee is commissioned to pub-
lish comments about the use of the product. This approves
publication, but also requires it. In article 3, publishing of
comments about the use and evaluation of the asset without
approval by the licensor beforehand is prohibited. In case
of unauthorized publication, the licensee has 24 hours to re-
move the published material. This improves the test case, as
it requires use of external agents or data sources depending
on the system, as otherwise there is no basis on which to
automate or act. Additionally, the passing of time is tested

with the time limit. Finally, in article 4, it is laid out that
the license agreement terminates automatically upon breach
of the licensing agreement, and that the licensee has to pay
a fee in case of breach. The resulting license agreement is
simplified for publication, but includes the most important
features of license contracts.

Compared to the previous work, this example adds im-
portant features that make it an actual license. The asset that
is licensed is defined and the relation between commenting
and publication and how this relates to the possibility of the
licensee being commissioned by the licensor is clarified. In
reality however, this would still be defined differently, with
likely a statement of intent, the spirit of the license in the
beginning and much more detailed definitions. Last, it was
not clearly defined when the license was breached or would
be terminated, so that was improved. In order not to make
it too hard on the example implementations, some care is
taken that the licensing contract does not constitute or seem
like an impossibility. To this end, it was evaluated on the
basis of Surden’s criteria for computable contracts. (Surden
2012) According to Surden, most of all a computable con-
tract needs some kind of data source, to assess performance,
compliance or breach, which then lead to lower transactions
costs and increased reliability. Additionally, the computer
or the contract on a computer needs to be told what to do,
which Surden calls an ‘automated prima facie assessment.’
In the example, the main points in this regard are the grant-
ing of the license itself, the determination of when or how an
evaluation and or comments were published, if they were re-
moved in time and finally whether or a given set of facts with
regard to these licensing obligations constitutes a breach of
contract or not. While parts of this can be automated, in such
a general textual form, not all of it can. Thus, to give the
computable contracts a fighting chance, an arbiter is intro-
duced to help make determinations. The arbiter is a natural
or legal person or possibly also a third-party software agent
that can make determinations about facts in case of disagree-
ments. The resulting test case license is still imperfect, but
an actually used license in natural, legal language probably
could fill a whole paper on its own. In Surden’s case with
SPDX (Odence, Lamons, and Lovejoy 2013), this license is
relatively well suited for computable contracting, as much
more fine grained licensing is possible, thanks to being able
to define (sub)licensees based on criteria of the student pop-
ulation, clear delineation of the asset being licensed and the
parties involved, with a limited number of happy states and
failure states. It is furthermore assumed that the actual ob-
ject of the license is described either in the license, by a
graphical interface or extracted from business logic systems.
Thus, (sub)licensees are easily accessible, and license status
and publishing obligation or permit are available.

In the spirit of Surden’s assessment, this presents a good
starting point for our experiment of examining different li-
cense implementations, as he claims computable contract-
ing is limited by possibilities of automated assessments, but
which he claims goes ‘far enough’ more often than not.

5.3 The criteria of examination
In earlier work the focus of comparison was on detailed le-
gal theoretical comparison, describing the contractual theory
of contracts as ‘legally binding agreements’ with the core
tenants of the agreement of the parties, consideration in ex-
change for something, the competence and the capacity of
the parties involved and the legal object and purpose of the
agreement. (Governatori et al. 2018) For the present analy-
sis, the focus is on whether the test case and its implemen-
tation capture the meaning and spirit of the contract (as well
as syntax and semantics), are functional and most of all still
‘look like a contract’ and can be read and understood by le-
gal professionals and others alike. Now, with the stage set
and the criteria explained, let’s meet the candidates of this
event.

6 The implementations
The e-contracting implementations are presented and as-
sessed. While they are assessed on the basis of a smart con-
tract system, they could also be implemented to work with
another e-contracting systems or more general normative en-
vironments.

6.1 Solidity
As an example of an imperative language that is used to
program ‘e-contracts’ Solidity is used, which was the first
higher level language for such scripts in the blockchain
space, and is still dominant at the time of writing.

Technology The solidity language was established by the
Ethereum project. (Gavin Wood 2013) It is an impera-
tive language that compiles down to bytecode that is run
in the Ethereum Virtual Machine (EVM), borrowing some-
what from JavaScript in syntax, but otherwise being stati-
cally typed and otherwise constrained due to the execution
environment on the blockchain. This is due to the fact that
as the code is necessarily computed by miners when propos-
ing new blocks for the blockchain, it has to be ensured that
the output is always the same given the same input and in-
finite loops or DDOS attacks are to be avoided.This neces-
sitates strict typing, (relatively) fixed arrays and very strict
loops that do not run an indeterminate amount of time. For
this, each execution step is priced in terms of ‘gas’ in the
EVM, which puts an extra cost on complex programs, but
especially on storage. The language is relatively readable,
but only in so far as traditional programming languages go.
The gas system is imperfect and flawed, but the best solution
available so far, using economic forces to secure its network.

Implementation This is an implementation of the license
agreement in solidity, with a current version of solidity as of
this writing. A lot of space is captured by the simple defini-
tion of basic variables and their types. These are necessary
for functionality at one hand, and for EVM execution on
the other hand, as a system with execution constraints such
as the Ethereum Smart Contract system needs this informa-
tion to price execution and storage. There is also a certain
amount of inherent duplication – f.e. it can be seen that vari-
ables established for the contract have to be passed again to

the constructor whereas these variables are necessary for the
solidity language, they do not serve any purpose in convey-
ing the legal or natural meaning of a contract with regard to
the agreement and the ‘spirit’. However, it can at least be
said that a properly written smart contract in an imperative
language such as Solidity does achieve a lot of functional-
ity. For the functionality, it can f.e. be held that important
events such as contract creation, termination, mediation (via
arbiter), performance and modification as well as monitor-
ing can be automated, or at least made partially functional,
using such a language. This might seem obvious, as that is
the purpose of the language, but it will become visible that in
the comparison performed that is a very relevant distinction.
Finally, it is fair to say that no normal legal professional or
layperson would even begin to understand the meaning of
such a contract or script. Even for some programmers, or
smart contract developers even, it can be very hard to fully
understand the meaning and all nuances of smart contracts,
as has repeatedly held in previous literature.

pragma solidity ˆ0.6.7;
pragma experimental ABIEncoderV2;
contract LicenseContract {

bytes32 work_hash; string name; address
payable licensor; address licensee;
address payable arbiter; bool
breachFeePaid;

event Status(LicenseProps);
struct LicenseProps {

int id; int licenseFee; uint breachFee;
boool isCommissioned; bool
publicationIsApproved; bool
requiresComments; uint timeToRemove;
bool triggeredTimeToRemove; bool

licenseBreached;}
mapping (uint => LicenseProps) licenses;
uint[] public licensesList;
uint numLicenses;
modifier onlyBy(address _account)

{require(msg.sender == _account,
"Sender not authorized."); _;}

function newLicense(int _id, int _licenseFee
, uint _breachFee, bool _isCommissioned,
bool _publicationIsApproved, bool

_requiresComments, uint _timeToRemove,
bool _triggeredTimeToRemove, bool
_licenseBreached) public returns (uint
licenseID) {

licenses[licenseID] = LicenseProps(
_id, _licenseFee, _breachFee,
_isCommissioned,
_publicationIsApproved,
_requiresComments, _timeToRemove
, _triggeredTimeToRemove,
_licenseBreached);

licenseID = numLicenses++;
return licenseID; }

function commissionComments(uint _licenseID)
public {
LicenseProps storage l = licenses[

_licenseID];
l.publicationIsApproved = true;
l.requiresComments = true;

l.isCommissioned = true; }
function grantApproval(uint _licenseID)

public {
LicenseProps storage l = licenses[

_licenseID];
l.publicationIsApproved = true; }

function evalPublication(uint _licenseID,
bool isPublished) public {
LicenseProps storage l = licenses[

_licenseID];
if (isPublished) {

if ((isPublished && !l.
isCommissioned || !l.
publicationIsApproved) && !l.
triggeredTimeToRemove) {
l.timeToRemove = now;
l.triggeredTimeToRemove = true;

} else if (l.triggeredTimeToRemove
&& now > l.timeToRemove + 1 days
) {
declareBreach(_licenseID);

} } emit Status(l); }
function declareRemoved(uint _licenseID)

public onlyBy(arbiter) {
LicenseProps storage l = licenses[

_licenseID];
l.timeToRemove = 0;
l.triggeredTimeToRemove = false; }

function declareBreach(uint _licenseID)
public onlyBy(arbiter) {
LicenseProps storage l = licenses[

_licenseID];
l.licenseBreached = true;
if (!breachFeePaid) {

breachFeePaid = false;
licensor.transfer(l.breachFee);
} } }

Listing 1: This is the Solidity Implementation of the License.

Further, it is on one hand more prone to errors, and on the
other hand much more verbose as the format is much more
visible. In an actual blockchain use case, especially on a sys-
tem with such economic incentives, it would probably also
make sense to implement a lot of actual evaluation off-chain,
because as long as license data is on-chain, it can be safely
checked off-chain by ‘everybody’. Still, this would necessi-
tate some other connection between legal contract, structure
and semantics and the functional transactional scripts. Thus,
ideally, independent of characterization of ‘smart contracts’,
there would be a stronger link between the legal part of a
smart contract and the functional parts of it. The surround-
ing environment anyway has to be adapted to contract man-
agement systems or end user needs, but a human readable
contract that captures the contractual essence is in both cases
an asset.

6.2 Logic-based languages (Prolog)
Whereas the previous work (Governatori et al. 2018) fo-
cused more on legal lifecycle and logic-based languages as
such, with a strong focus on Defeasible Logic because its
built-in ‘defeasibility’ lends itself well to contracts that have
no ‘undefined’ states, the present work uses Prolog due to

accessibility and availability, ease of replication and suitabil-
ity due to great previous work testing the limits of Prolog for
legal reasoning and logic.

Technology Prolog is here used as an example for various
kinds of attempts at using primarily logic-based languages
for contract like systems or generally reasoning about law
and contracts. Reasoning is here understood as making de-
ductions based on a set of inputs. Furthermore, the syntax
and structure of Prolog is more easily acquired and tested.

While Prolog is not as tailored to be defeasible and can
in principle have unclear states, it otherwise supports every-
thing that DL supports and even much more. (Morelli, Ralph
2011)

The main parts of Prolog used in this research are facts
‘exists(paper).’, which means paper exists, rules denoted by
‘:-’ which evaluate the left statement to true if the conditions
on the right hand side below match, and variable, denoted by
every term starting with a capital letter. As the Prolog inter-
preter, similar to a DL implementation does by default not
know anything, everything has to be provided, which also
means that some basics are just facts that are assumed to be
true or set by the creator as true, as otherwise there would
be no starting point. This is opposed to a blockchain based
system or many procedural languages, where for example an
identity structure or similar might already be implemented.
Overall, it can be concluded that Prolog is very useful for
sketching logic and processing workflows and can easily be
accessed. Care should be taken to make sure the supplied an-
swers make sense and the names or words used for naming
variables and facts actually make sense, as compared to im-
perative programming, the supplied facts and rules are not
merely variables but actually make up the knowledge base
of the project, such that badly named, too short or too long
items can render the whole project hard to read or even use-
less. For actual implementation however it would proba-
bly be seldom used, as too much would have to be written
around it. That could be different with more tailored vari-
ants such as DR-Prolog (Antoniou and Bikakis 2007), Logi-
calContracts (Kowalski, Calejo, and Sadri 2018) or if trans-
lation to an imperative language becomes possible, that can
directly be deployed in a normative system where its facts
take on deeper meaning by being connected to identities,
values and assets. Thus, at the very least for testing, Pro-
log and similar languages are very relevant, though it would
help to have a system on how to set facts, verbs and rules, as
otherwise inputting knowledge can seem arbitrary.

Implementation The Prolog implementation of the tex-
tual license example mentioned above can be found below.
First, similar to the preamble of the textual License, some
basic facts are laid down, such as the natural or legal per-
sons that are a part of the license, if the Licensor commis-
sioned the Licensee and if the comments of the evaluation
were published or not and how long ago that was.

In article 1, the licensee is granted a license by the licen-
sor, and it is checked if both parties exist, whether a fee was
paid and if there actually was an offer of a license. If ei-
ther is not true, there is no license. Furthermore, if there is
a license, sublicenses are allowed, and it is defined that the

licensee may publish comments in case there is a license and
the licensor approved the comments. Afterwards, in article 2
it is defined that the licensee counts as commissioned in case
the licensor commissioned them, and that if they are count-
ing as commissioned, they also must publish the comments.
Thirdly, in article 3, the prohibitions are laid down, whereto
the licensee may not publish comments if they were not ap-
proved and that they must remove them if they do it anyway
and with an extra check of the time, so that this obligation
to remove disappears in case it is complied with. Finally, in
article 4, it is established that the license terminates if there
is a breach by the licensee, and that the licensee has to pay a
fee in case of a breach.

The biggest issue with pure logic-based examples is
mainly their lack of grey areas and how they learn about
facts. How these facts get there – also a big issue with smart
contracts in general and solidity in particular – is not solved,
so the great properties of a logic-based implementation are
always limited by its surroundings. Thus, this only solves
the actual logic. The actual input/output still would have
to come from somewhere else, an additional layer of im-
plementation for any logic-based use, where errors can be
introduced and part of the advantage of the logic-based ap-
proach gets lost in the process. Declarative languages used
for functionality could help, however it is uncertain if that
will really help, as truly self-contained languages are proba-
bly too limited, any introduction of uncertainties will make
the logic-based approach also more error prone

person(arbiter).
person(licensor).
person(licensee).
person(sublicensee).
commissioned(Licensor).
publish(time, 24).
licenses(Licensor, Licensee) :-

%grants_license(licensor, asset,
licensee):

exists(licensor).
exists(licensee).
paid_fee(Licensor, Licensee).
made_offer(Licensor, Licensee).

allow_sublicense(Licensor, Sublicensee) :-
licenses(Licensor, Licensee).

may_publish(Licensee) :-
licenses(Licensor, Licensee).

approves_comments(Licensor).
is_commissioned(Licensee) :-

commissioned(Licensor).
must_publish(Licensee) :-

is_commissioned(Licensee).
not(publish(Licensee)):-

not(may_publish).
not(approves_comments(Licensor)).

removed_comments(Licensee) :-
Removal_time > 24.

removed_comments(Licensee) :-
Removal_time < 24, not(must_remove(

Licensee, Published)).
license_canceled(Licensee) :-

breaches(Licensee).
pay_fee(Licensee, Licensor) :-

breaches(Licensee).

Listing 2: This is the prolog logic version.

For logic-based approaches, they can capture most of the
meaning and spirit of the contract, however it will only be
accessible by experts. Even if it is more precise than imper-
ative programming, languages such as DL and Prolog are
still too arcane to fully capture a contract and make it ac-
cessible. Partially, this is because the intricacies of syntax
and semantics of natural language are not captured in the
kind of logic-based ‘contract’ compared here. The resulting
work is functional, in so far as questions can be asked of
it, it can be resolved for facts and answers like an equation,
and it can be automated and supplied with data in much of
the way that Surden envisions. Still, it does not really ‘look’
like a contract and as said in the beginning would need some
connection to a different textual version of the contract to be
accessible thereby negating most benefits.

In what Wong calls the 2nd generation of Smart Conctract
Templating Systems and their blockchain brethren in the 2.5
generation, no winner has emerged yet, even of those that
are still alive. Due to space constraints, this discussion is
omitted here.

6.3 Lexon
Finally, Lexon is described as a primary example of a new
kind of ‘script’ specific to e-contracts, developed specifically
for merging e-contracts and legal contracts, while being easy
to write and read for humans without requiring huge com-
puting resources.

Technology Primarily, Lexon (Diedrich 2020) resembles
the structure of legal contracts, and uses similar language. It
is already functional but at the time of writing also still un-
der heavy development. The defining unique characteristic
is that it uses direct translation of natural language and legal
prose to executable code via an Abstract Syntax Tree, with-
out a secondary intermediary layer. This keeps the structure
and syntax and higher order meaning of the original docu-
ment much better. While Lexon documents require a certain
structure, it is not foreign to people nor lawyers and very
natural language like. So far, it comes closest to a 3rd gen-
eration SCT system, according to Wong’s definition of the
main characteristic being a DSL (Wong, Meng 2018), al-
though with the aim to go even further.

Each document starts with a title, mentions the Lexon ver-
sion it is built for, and can offer some explanation or other
guidance in a preamble, similar to a normal legal contract.
In a further section, terms are defined, such as the parties to
the contract, amounts and fees and what their role is. Then,
the main contract starts via ‘CONTRACT(S)’. The contract
is then divided into ‘clauses’ that roughly match onto func-
tions in a solidity coded contract.

This example demonstrates, that first there is the
CLAUSE keyword and that Lexon still partly relies on key-
words, similar to other, imperative programming languages.
However, it was developed in such a way that its keywords
are as close as possible to legal language used in ordinary
contracts, and its actual content is legible for programmers,

legal professionals and everybody else alike. So far, all the
‘actionable’ words are mapped to terms and phrases in the
solidity smart contract language, however in principle they
could also map to other normative systems, such as business
rule systems.

Implementation Below is an implementation of the li-
cense example in Lexon. At the beginning, the header with
the name of the contract, the software version and the pream-
ble are shown. Preamble is a non-actionable part of the
script but might be very relevant in case of a dispute as
earlier literature argued that in most cases there is always
a ‘contract stack’ consisting of multiple expressions of the
contract, such as the ‘smart contract’ as a functional layer
and others that could help with interpretation, particularly
with finding out the intent of the agreement and the parties
involved. In the next section, the terms are fixed, defining
who licensor and arbiter are, the fees are established and set
and an arbiter is appointed. Then, the actual contract is de-
fined, in this case ‘per licensee’ so that it is clear that there
is one contract per licensee. This is then also deployed like
that later, in that executable code is instantiated with actual
amounts, assets and identities per licensee, and certain prop-
erties like “Permission to Comment” are established, and
most importantly, a description or link to an identifying to-
ken for the licensed assets are established. This could be just
a boolean, a license key or a hash of the licensed work for
example. If and how this would be checked is another mat-
ter, in case of software it could be checked by the software
itself, in cases of artworks it could be checked via a DAPP
or centralized website for such work. For all content of the
license articles that have an actually “actionable” function,
meaning it can at least to some degree be recorded, auto-
mated or delegated to the arbiter, there is a ‘CLAUSE’ that
signifies that. When compiled, these would be mapped to
solidity ‘functions’, and are also mentally much closer to a
kind of ‘declarative function’ then clauses, as they are un-
derstood by legal professionals. This is also one of the main
negative points, that while the resulting code is much closer
to ordinary contractual language, still certain keywords and
a certain structure should be used. However, it should also
be noted that these depend a lot on the underlying norma-
tive system that they compile to, meaning as the underlying
system uses ‘functions’ (in Solidity), Lexon needs to map to
them. In a different normative system, such as a business
rule system, this could be organized differently.

LEX: Evaluation License System.
LEXON: 0.2.12
PREAMBLE: This is a licensing contract for a

software evaluation.
TERMS:
"Licensor" is [a person].
"Arbiter" is [a person].
"License" is this contract.
"Licensing Fee" is [an amount].
"Breach Fee" is [an amount].
The Licensor appoints the Arbiter,
fixes the Licensing Fee,
and fixes the Breach Fee.
CONTRACTS per Licensee:

"Description of Goods" is [a text].
"Licensee" is [a person].
"Paid" is [a binary].
"Commissioned" is [a binary].
"Comment Text" is [a text].
"Published" is [a binary].
"Permission to Comment" is [a binary].
The Licensor fixes the Description of Goods.
CLAUSE: Pay.
The Licensee pays the Licensing Fee to the

Licensor,
and the Breach Fee into escrow.
The License is therefore Paid.
CLAUSE: Commission.
The Licensor may certify this License as

Commissioned.
CLAUSE: Comment.
The Licensee may register a Comment Text.
CLAUSE: Publication.
The Licensee may certify the License as

Published.
CLAUSE: Grant Permission to Comment.
The Licensee may grant the Permission to

Comment.
CLAUSE: Examine for Breach.
The Arbiter may Declare Breach, if:
the License is Commissioned and no Comment

Text is set;
or the License is Published and there is no

Permission to Comment.
CLAUSE: Declare Breach.
The Arbiter may pay the Breach Fee to the

Licensor,
and afterwards terminate this License.

Listing 3: This is the Lexon version.

As can be seen, the license as implemented in Lexon is
relatively close to the meaning and spirit of the contract,
though it still needs a certain structure. The syntax and se-
mantics are close enough to natural language to be readable
and require little or no training to grasp meaning and spirit of
the contract. Furthermore, the result is as functional as any
‘smart contract’ of the underlying system. Most importantly
however, the Lexon contract still mostly looks and feels like
a contract (and could be made to look more natural as well,
i.e. fill words and similar do not bother the compiler) so
that it can be read and understood by most, but especially
also by legal professionals without programming or other in
depth knowledge. Thus, the Lexon stack is a at least for now
quite promising and the most advanced digital contract stack
available, being a proper 3rd gen SCT system although it re-
mains to be seen if it will continue to prosper or stagnate and
remain an interesting experiment.

7 Findings
The investigation started with an example of a software li-
censing contract, which at one hand includes things help-
ful for electronic contracts such as a provision for an ar-
biter, but on the other hand also features time and vague un-
certain provisions that require such a change and highlight
the difficulties in understanding, interpreting and enforcing

contracts, not only but especially when in a restricted envi-
ronment such as that of a smart contract language. If we
then compare this to solidity, as representing an imperative,
somewhat high-level language, stark differences emerge, as
the contract as such is not representable in such a language.
Still, even a piece of software, including its documentation,
git commit logs and informal communication can be seen as
a contract, as supported by Allen. (Allen 2018) The solidity
example explicitly describes the actions that the smart con-
tract should support, with a lot of technical jargon and even
experienced programmers still frequently get it wrong. This
does not mean that Solidity doesn’t have its uses, however it
has to be taken into account. It is also observable, that there
is a lot of repetition in the smart contract, such that not only
does a variable have to be initialized, but then it has to be
passed to each function and the constructor as well, causing
a lot of extra text especially when trying to use descriptive
variables and function names. An additional difficulty could
arise due to scoping problems – meaning that like in other
languages, variables have a local, global or possibly other
scopes, such that variables can have different meaning and
values depending on where they are. This could maybe be
related to context in natural language, but there, people and
legal professionals are used to it and there is context, in the
context of a programming language it is just foreign and the
context is more akin to two brackets instead of three. If de-
fined in terms of the contract stack and our criteria estab-
lished above, the solidity implementation gets full points in
the functionality department, as everything that is possible
in principle within the constraints of the Ethereum EVM is
possible. It also at the very least has the possibility of the
‘meaning and spirit’ of a contract. In regard to syntax and
semantics, a Solidity based contract does not really capture
the nature of the original license contract, and neither does
it ‘look like a contract’ to legal professionals or laypersons.
Lastly, the contract is also not read nor understood by them.
In the next section, Prolog was looked at, a widely avail-
able, accessible and extensible, logic-based language. First,
also the Prolog example captures the meaning and spirit of
the contract. The syntax and semantics are much more rea-
sonable and readable, and it looks a lot more like natural
text, still not like a contract though. However, a big prob-
lem is that in general, logic-based languages, including Pro-
log, offer a lot of flexibility, but without the flexibility and
dictionary of natural language. As a result, much depends
on the choice of terms and verbs, and on the understand-
ing of the definition of facts, variables and functions/rules
in Prolog. More specifically, facts and rules can be very de-
tailed and specific and easy to read depending on how they
are chosen, but can also be very useless, if cryptic or con-
fusing terms are chosen. This makes it maybe even more
confusing than an imperative programming language, as the
differences are more subtle and a system for defining facts
and rules would be necessary to have a certain predefined
standard. Furthermore, a logic-based contract is ‘solvable’
in the sense that the interpreter can solve it based on input
and determine possible or logical end states. However, by
itself it does not have functionality. This means that to im-
plement functionality, it would have to be embedded into

a compiler or other normative environment that translates
it to its functionality, so that f.e. a licensee can be tied to
something. This is certainly possible, but then this system
would have to be assessed as well, as it might impact the
assessment. Lastly, Prolog based contracts look more like
a contract (f.e. because clauses can be separated more like
articles than functions) than one based on an imperative lan-
guage and is more easily understood by legal professionals
and others, but only slightly so and very dependent on how
terms and rules are named.Lastly, although not quite natural
language, Lexon qualifies as the ‘next best thing’, assum-
ing it can continue development and not fade away like so
many others before it. While it has some of the drawbacks of
logic-based and imperative languages – it does not look en-
tirely natural, in that the way clauses are described, requires
some change of thinking for non-programmers, and it is de-
pendent on the target environment. However, these can still
be easily understood when read and this will probably also
improve with time or when used with another normative sys-
tem as a foundation. Still, however, it resembles a contract
in meaning and spirit, and captures a lot of the syntax and
semantics of the original through not using an intermediary
layer but direct mapping via abstract syntax tree. The con-
tract has the same potential functionality as the underlying
normative environment and mostly ‘looks like a contract’
and can be understood and read by legal professionals and
others alike. At least in so far as other contracts are under-
stood today. So, while the Lexon compiler and system does
not actually understand anything, the idea is that it doesn’t
have to do that, in so far as syntax and semantics are kept
close to the original, making for a more closely integrated
contract stack.

8 Conclusion
In this paper, an example license was presented and imple-
mented in three different tech stacks. The example license
was inspired by previous work but now aligned along dif-
ferent guidelines. This license was implemented in Solidity,
Prolog, and Lexon. The main characteristics for examina-
tion were ‘meaning and spirit of the contract’, syntax and
semantics (of the original license), functionality and looks.
Based on these factors, Lexon (barring other developments)
is the most promising candidate right now, as it is at its core
not too complicated and not reliant on things like statistic-
based AI, but at the same time still very much still looks
like natural language and is also very functional at the same
time.

References
Akoma Ntoso. 2015. Akoma Ntoso - What is it?
https://archive.vn/wip/cqOGp.
Allen, J. G. 2018. Wrapped and Stacked: ‘Smart Contracts’
and the Interaction of Natural and Formal Language. Euro-
pean Review of Contract Law 14(4):307–343.
Ambrogi, R. J. 2017. A Golden Age of Legal Tech Start-
Ups. Law Practice 43(2):34–41.
Andres Guadamuz, and Andrew Rens. 2013. Comparative

analysis of copyright assignment and licence formalities for
Open Source Contributor Agreements. SCRIPTed.
Antoniou, G., and Bikakis, A. 2007. DR-Prolog: A System
for Defeasible Reasoning with Rules and Ontologies on the
Semantic Web. IEEE Transaction on Knowledge and Data
Engineering 19(2):233–245.
Boer, A.; Winkels, R.; and Vitali, F. 2008. MetaLex XML
and the Legal Knowledge Interchange Format. In Lecture
Notes in Computer Science. Springer. 21–41.
Braegelmann, T.; Breidenbach, S.; and Glatz, F. 2019.
Rechtshandbuch Legal Tech. München: C.H. Beck, 2. au-
flage edition.
Christian Reitwiessner, S. D. 2020. Ethereum/solidity.
ethereum.
Cohney, S., and Hoffman, D. 2020. Transactional Scripts in
Contract Stacks. Faculty Scholarship at Penn Law.
Diedrich, H. 2020. Lexon Bible: Hitchhiker’s Guide to Dig-
ital Contracts. Independently published.
Garcia, A., and Simari, G. 2002. Defeasible Logic Program-
ming: An Argumentative Approach. Theory and Practice of
Logic Programming.
Gavin Wood. 2013. Ethereum: A secure decentralised gen-
eralised Transaction Ledger. gavwood.com.
Governatori, G.; Idelberger, F.; Milosevic, Z.; Riveret, R.;
Sartor, G.; and Xu, X. 2018. On legal contracts, imperative
and declarative smart contracts, and blockchain systems. Ar-
tificial Intelligence and Law 26(4):377–409.
Kowalski, R.; Calejo, M.; and Sadri, F. 2018. Logic and
Smart Contracts.
Lexon Foundation. 2020. Lexon Tech. http://lexon.tech/.
Morelli, Ralph. 2011. PROLOG Facts, Rules and Queries.
https://archive.vn/0O3K9.
Natalya F. Noy, and Deborah L. McGuinness. 2001. On-
tology Development 101: A Guide to Creating Your First
Ontology. https://archive.vn/015LB.
Nute, D. 1993. Defeasible Logic. In Handbook of Logic
in Artificial Intelligence and Logic Programming, volume 3
of Handbook of Logic in Artificial Intelligence and Logic
Programming. Oxford University Press. 353–395.
OASIS. 2008. Legal XML. http://www.legalxml.org/.
Odence, P.; Lamons, S.; and Lovejoy, J. 2013. Advancing
the Software Package Data Exchange: An Update on SPDX.
International Free and Open Source Software Law Review
5:145.
ReasonML. 2020. Reason. https://reasonml.github.io/.
Stanford University. 2015. Computable Contracts Project.
http://compk.stanford.edu/.
Surden, H. 2012. Computable Contracts. University of
California Davis Law Review 46:629–700.
SWI-Prolog. 2020. SWI-Prolog – Manual.
https://archive.vn/wip/L1MRC.
Wong, Meng. 2018. Computable Contracts: From
Academia to Industry. In Rechtshandbuch Legal Tech. C.H.
Beck, 1st edition edition.

	Introduction
	Primer on Legal Technologies
	Legal Markup
	Logic-Based Languages
	E-Contract Systems
	Metadata Systems
	``Legal Tech"

	What's legal about code? - The pyramid of norms
	Method
	Test Case
	Textual "Technology"
	Test Case
	The criteria of examination

	The implementations
	Solidity
	Logic-based languages (Prolog)
	Lexon

	Findings
	Conclusion

